Identifying anthropogenic and natural influences on extreme pollution of respirable suspended particulates in Beijing using backward trajectory analysis

J Hazard Mater. 2008 Jun 15;154(1-3):459-68. doi: 10.1016/j.jhazmat.2007.10.064. Epub 2007 Oct 24.

Abstract

In China, daily respirable suspended particulate (RSP, particles with aerodynamic diameters less than 10 microm) concentrations exceeding 420 microg m(-3) are considered "hazardous" to health. These can lead to the premature onset of certain diseases and premature death of sick and elderly people; even healthy people are warned to avoid outdoor activity when RSP concentrations are high. Such high pollution levels are defined as extreme RSP pollution events. Recent epidemiological studies have shown that a distinct difference exists between the health effects caused by natural sources and anthropogenic sources, mandating knowledge of the source of extreme RSP pollution. Twenty-six extreme RSP pollution events were recorded in Beijing from January 2003 to December 2006. The HYSPLIT4 (Hybrid Single Particle Lagrangian Integrated Trajectory) model (Version 4) was used to discriminate the sources of these extreme RSP pollution events. The model found that twelve events were caused from natural sources (dust storms), nine events from anthropogenic sources (e.g., vehicles and industrial activities, etc.) under quasi-quiescent weather, and five events were from mixed causes. Identifying such events will be valuable in epidemiological studies on air pollution in Beijing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants / analysis*
  • Air Pollution / analysis*
  • China
  • Environmental Monitoring
  • Models, Theoretical
  • Particulate Matter / analysis*
  • Wind

Substances

  • Air Pollutants
  • Particulate Matter