Fractionation and mobility of phosphorus in a sandy forest soil amended with biosolids

Environ Sci Pollut Res Int. 2007 Nov;14(7):529-35. doi: 10.1065/espr2007.08.443.

Abstract

Goal, scope and background: Biosolids, i.e., treated sewage sludge, are commonly used as a fertilizer and amendment to improve soil productivity. Application of biosolids to meet the nitrogen (N) requirements of crops can lead to accumulation of phosphorus (P) in soils, which may result in P loss to water bodies. Since 1996, biosolids have been applied to a Pinus radiata D. Don plantation near Nelson City, New Zealand, in an N-deficient sandy soil. To investigate sustainability of the biosolids application programme, a long-term research trial was established in 1997, and biosolids were applied every three years, at three application rates, including control (no biosolids), standard and high treatments, based on total N loading. The objective of this study was to evaluate the effect of repeated application of biosolids on P mobility in the sandy soil.

Materials and methods: Soil samples were collected in August 2004 from the trial site at depths of 0-10, 10-25, 25-50, 50-75, and 75-100 cm. The soil samples were analysed for total P (TP), plant-available P (Olsen P and Mehlich 3 P), and various P fractions (water-soluble, bioavailable, Fe and Al-bound, Ca-bound, and residual) using a sequential P fractionation procedure.

Results and discussion: Soil TP and Olsen P in the high biosolids treatment (equivalent to 600 kg N ha(-1) applied every three years) had increased significantly (P<0.05) in both 0-10 cm and 10-25 cm layers. Mehlich 3 P in soil of the high treatment had increased significantly only at 0-10 cm. Olsen P appeared to be more sensitive than Mehlich 3 P as an indicator of P movement in a soil profile. Phosphorus fractionation revealed that inorganic P (Al/Fe-bound P and Ca-bound P) and residual P were the main P pools in soil, whereas water-soluble P accounted for approximately 70% of TP in biosolids. Little organic P was found in either the soil or biosolids. Concentrations of water-soluble P, bioavailable inorganic P (NaHCO3 Pi) and potentially bioavailable inorganic P (NaOH Pi) in both 0-10 and 10-25 cm depths were significantly higher in the high biosolids treatment than in the control. Mass balance calculation indicated that most P applied with biosolids was retained by the top soil (0-25 cm). The standard biosolids treatment (equivalent to 300 kg N ha(-1) applied every three years) had no significant effect on concentrations of TP, Mehlich 3 P and Olsen P, and P fractions in soil.

Conclusions: The results indicate that the soil had the capacity to retain most biosolids-derived P, and there was a minimal risk of P losses via leaching in the medium term in the sandy forest soil because of the repeated biosolids application, particularly at the standard rate.

Recommendations and perspectives: Application to low-fertility forest land can be used as an environmentally friendly option for biosolids management. When biosolids are applied at a rate to meet the N requirement of the tree crop, it can take a very long time before the forest soil is saturated with P. However, when a biosolids product contains high concentrations of P and is applied at a high rate, the forest ecosystem may not have the capacity to retain all P applied with biosolids in the long term.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon / chemistry
  • Chemical Fractionation
  • Fertilizers
  • Phosphorus / chemistry*
  • Pinus
  • Sewage / chemistry*
  • Soil*
  • Trees*
  • Water Pollution / analysis

Substances

  • Fertilizers
  • Sewage
  • Soil
  • Phosphorus
  • Carbon