A family of proteins has recently been identified, each member of which has the capacity to initiate muscle differentiation in many non-muscle cell types. These factors, which include MyoD1, myogenin, myf-5 and MRF4, share homologies with each other and belong to a superfamily of Myc-related proteins. Expression of these regulatory proteins results in auto-activation and cross-activation of other members of the family and in the transcriptional activation of the markers of terminal differentiation. Sequence analysis has shown a conserved basic domain in each protein that is required for binding to specific DNA sequences of the E-box type and for myogenic activation. A conserved helix-loop-helix (HLH) domain allows homo- and heterodimerization of these muscle-specific proteins with each other and with ubiquitously expressed proteins such as the E2A gene products (E12/E47). This review describes the discovery and characterization of these muscle regulatory proteins and their actions in the context of proposed models for the determination and differentiation of muscle tissue.