Analysis of alcohol use data and other low base rate risk behaviors using ordinary least squares regression models can be problematic. This article presents 2 alternative statistical approaches, generalized linear models and bootstrapping, that may be more appropriate for such data. First, the basic theory behind the approaches is presented. Then, using a data set of alcohol use behaviors and consequences, results based on these approaches are contrasted with the results from ordinary least squares regression. The less traditional approaches consistently demonstrated better fit with model assumptions, as demonstrated by graphical analysis of residuals, and identified more significant variables potentially resulting in theoretically different interpretations of the models of alcohol use. In conclusion, these models show significant promise for furthering the understanding of alcohol-related behaviors.