A truncated structural protein of hepatitis E virus (HEV), p239, occurs as 23 nm particles consisting of partial homodimers. As the latter resemble the HEV capsomere structurally and antigenically, it was postulated that the recombinant protein may serve as a probe for the HEV receptor. This hypothesis was supported by findings that purified p239 bound and penetrated different cell lines that are susceptible to HEV, and inhibited HEV infection of these cells. The binding was blocked by four of six monoclonal antibodies (mAbs) reactive against the dimeric domain of p239, and by two of three mAbs reactive against its monomeric domain, suggesting that binding may involve a portion of each domain. Mutation affecting the monomeric domain had no effect on binding or capacity to block HEV infection, whereas that affecting the dimeric domain diminished binding of the mutant peptide markedly and abrogated its capacity to block HEV infection. These results suggest that HEV infection might involve distinct receptor-binding sites.