Objective: Physiologic and pathologic comparison of two modes of assisted ventilation, nasal intermittent positive-pressure ventilation (NIPPV) and synchronized intermittent mandatory ventilation (SIMV), in spontaneously breathing term newborn piglets with saline lavage-induced lung injury.
Design: After inducing acute lung injury via repetitive saline lavage, piglets were randomized to NIPPV (n = 12) or SIMV (n = 11) and treated for 6 hrs.
Setting: Clinical laboratory.
Subjects: Spontaneously breathing term newborn piglets.
Interventions: Invasive (SIMV) or noninvasive (NIPPV) assisted ventilation for 6 hrs.
Measurements: Physiologic parameters and arterial blood gases were continuously monitored. At the conclusion of the study, lung tissue was obtained to analyze for evidence of inflammation, including myeloperoxidase, interleukin-8, and hydrogen peroxide levels, as well as for evidence of pathologic injury.
Main results: Piglets treated with NIPPV demonstrated higher arterial blood gas pH (p < .001), lower PaCO2 (p < .05), and a lower set respiratory rate (p < .0001) as compared with the SIMV-treated piglets. The piglets in the SIMV group had higher PaO2/PaO2 ratio than those in the NIPPV group (p = .001). There was significantly more interstitial inflammation (p = .04) in the SIMV-treated piglets compared with the NIPPV-treated piglets. Total respiratory rate, heart rate, blood pressure, oxygen saturation, and biochemical markers of lung inflammation were not different between the groups.
Conclusion: In surfactant-deficient term newborn piglets, NIPPV offers an effective and noninvasive ventilatory strategy with the potential for less pathologic lung inflammation.