Visual spatial attention has been described as a process that favors the processing of sensory information that falls into the "spotlight of attention." Recent studies have provided support for an ability to split this attentional focus to selectively process spatially separate locations. Using functional magnetic resonance imaging, the signature for the presence of multiple spotlights is the presence of multiple retinotopically specific foci of activation in striate and extrastriate visual areas. We used this approach to investigate the presence of such separable activations as a function of the eccentricity of the spatial foci of attention. Visual stimuli consisted of letters and digits displayed in rapid serial visual presentation (RSVP). Five RSVP streams were presented simultaneously, one in the center of the visual field and one in each visual field quadrant. Subjects had to deploy their attention either to a single peripheral location or two non-contiguous regions performing a match-mismatch judgment. The results show that dividing attention leads to multiple spotlights of attention for central as well as more peripheral locations of the visual field. However, depending on the exact location and width of the attentional spotlights, resulting activation maps might reveal merged activation patterns even in the presence of distinct attentional spotlights.