Most phylogeographic studies examine organisms that do not have transcontinental distributions and therefore the genetic and temporal effects of barriers across an entire continent cannot be assessed with respect to a single species. We examined the phylogeographic structure, lineage age, and historical demography using sequences from the mtDNA cytochrome b gene of the widespread North American racer (Coluber constrictor), one of the few abundant transcontinental snakes that occurs throughout many diverse biomes. Our results indicate that this complex is comprised of six lineages differing greatly in geographic extent, with the largest (a central US clade) being approximately 26 times greater than the smallest (a lineage restricted to the Florida Panhandle and nearby portions of adjacent States). Most of the six lineages appear to be separated at previously identified genetic barriers for several vertebrates with similar ranges. Lineage diversification in this species began in the late Miocene, separating populations in the Florida Peninsula from the remainder of the US. Diversification of lineages continued throughout the Pliocene and early Pleistocene. Four of the six lineages occur east of the Mississippi River, with only two distinctly young ( approximately 1.5 mya) lineages found west of the Mississippi River (one occurs west of Continental Divide). All methods of demographic inference, including the mismatch distribution, Fu and Li's D and Tajima's D , and Bayesian skyline plots revealed population expansion occurring in the mid-to-late Pleistocene for every lineage, regardless of size or proximity to formerly glaciated areas. Population expansion for lineages found east of the Mississippi River occurred earlier and was much greater than those found west of the River.