Background: Previous reports have suggested that levels of advanced glycation end product-modified LDL (AGE-LDL) increase in patients with diabetes due to elevated plasma glucose. However, understanding of the mechanisms by which AGE-LDL may accelerate atherogenesis remains incomplete.
Methods and results: Microarray and reverse transcription real-time PCR (RT-PCR) analyses revealed that AGE-LDL significantly increased levels of CC chemokine receptor 2 (CCR2) mRNA in human macrophages compared with LDL, an effect accompanied by increased levels of CCR2 protein. Flow cytometry also showed that AGE-LDL increases CCR2 expression on the cell surface following stimulation (48h) (P<0.05). This effect appeared to depend on the receptor for AGE (RAGE), since an anti-RAGE antibody significantly blocked increased CCR2 mRNA. Functional studies demonstrated that exposure of THP-1 monocytoid cells to AGE-LDL increases chemotaxis mediated by monocyte chemoattractant protein-1 (MCP-1) up to 3-fold compared to LDL treatment (P<0.05).
Conclusions: These data show that AGE-LDL can increase CCR2 expression in macrophages and stimulate the chemotactic response elicited by MCP-1. This novel mechanism may contribute to accelerated atherogenesis in diabetic patients.