Purpose: Squamous cell carcinomas of the head and neck (HNSCC) often harbor p53 mutations, but p53 protein degradation by the viral oncoprotein E6 may supercede p53 mutations in human papillomavirus 16 (HPV16)-positive tumors. The prevalence of p53 mutations in HPV-positive HNSCCs is indeed lower, but in some tumors these alterations coexist. The purpose of this study was to discern whether HNSCCs differ in the type of p53 mutations as a function of HPV16 status.
Experimental design: The study was nested within a prospective multicenter study (ECOGE 4393/RTOG R9614) of patients with HNSCC treated surgically with curative intent. Tumors from one study center were used to construct a tissue microarray. The tumors were well characterized with respect to p53 mutational status. The tissue microarray was evaluated by HPV16 in situ hybridization. HPV16 analysis was also done on a select group of tonsillar carcinomas known to harbor disruptive p53 mutations defined as stop mutations or nonconservative mutations within the DNA binding domain.
Results: HPV16 was detected in 12 of 89 (13%) HNSCCs. By tumor site, HPV16 was detected in 12 of 21 (57%) tumors from the palatine/lingual tonsils, but in none of 68 tumors from nontonsillar sites (P < 0.00001). Both HPV16-positive and HPV16-negative HNSCCs harbored p53 mutations (25% versus 52%), but disruptive mutations were only encountered in HPV16-negative carcinomas. Of seven tonsillar carcinomas with disruptive p53 mutations, none were HPV16 positive, in contrast to HPV16-positive tonsillar carcinomas without disruptive p53 mutations (0% versus 57%; P = 0.008).
Conclusions: Although HPV16 and mutated p53 may coexist in a subset of HNSCCs, HPV16 and disruptive p53 mutations seem to be nonoverlapping events. A less calamitous genetic profile, including the absence of disruptive p53 mutations, may underlie the emerging clinical profile of HPV16-positive HNSCC such as improved patient outcome.