NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities

Diabetes Care. 2008 Feb:31 Suppl 2:S170-80. doi: 10.2337/dc08-s247.

Abstract

Reactive oxygen species (ROS) influence many physiological processes including host defense, hormone biosynthesis, fertilization, and cellular signaling. Increased ROS production (termed "oxidative stress") has been implicated in various pathologies, including hypertension, atherosclerosis, diabetes, and chronic kidney disease. A major source for vascular and renal ROS is a family of nonphagocytic NAD(P)H oxidases, including the prototypic Nox2 homolog-based NAD(P)H oxidase, as well as other NAD(P)H oxidases, such as Nox1 and Nox4. Other possible sources include mitochondrial electron transport enzymes, xanthine oxidase, cyclooxygenase, lipoxygenase, and uncoupled nitric oxide synthase. NAD(P)H oxidase-derived ROS plays a physiological role in the regulation of endothelial function and vascular tone and a pathophysiological role in endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, fibrosis, angiogenesis, and rarefaction, important processes underlying cardiovascular and renal remodeling in hypertension and diabetes. These findings have evoked considerable interest because of the possibilities that therapies against nonphagocytic NAD(P)H oxidase to decrease ROS generation and/or strategies to increase nitric oxide (NO) availability and antioxidants may be useful in minimizing vascular injury and renal dysfunction and thereby prevent or regress target organ damage associated with hypertension and diabetes. Here we highlight current developments in the field of reactive oxygen species and cardiovascular disease, focusing specifically on the recently identified novel Nox family of NAD(P)H oxidases in hypertension. We also discuss the potential role of targeting ROS as a therapeutic possibility in the management of hypertension and cardiovascular disease.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Antioxidants / pharmacology
  • Antioxidants / therapeutic use
  • Blood Vessels / enzymology*
  • Cardiovascular Diseases / drug therapy*
  • Clinical Trials as Topic
  • Homeostasis
  • Humans
  • Hypertension / drug therapy
  • Hypertension / epidemiology*
  • NADPH Oxidases / metabolism*
  • Oxidative Stress / physiology*
  • Reactive Oxygen Species / metabolism*
  • Superoxides / metabolism
  • Xanthine Oxidase / metabolism

Substances

  • Antioxidants
  • Reactive Oxygen Species
  • Superoxides
  • Xanthine Oxidase
  • NADPH Oxidases