Inelastic neutron scattering is used to investigate magnetic excitations in the quasi-one-dimensional quantum spin-liquid system Cu(2)Cl(4).D(8)C(4)SO(2). Contrary to previously conjectured models that relied on bond-alternating nearest-neighbor interactions in the spin chains, the dominant interactions are actually next-nearest-neighbor in-chain antiferromagnetic couplings. The appropriate Heisenberg Hamiltonian is equivalent to that of a S=1/2 4-leg spin-tube with almost perfect one dimensionality and no bond alternation. A partial geometric frustration of rung interactions induces a small incommensurability of short-range spin correlations.