We develop a novel self-consistent approach for studying the angle resolved photoemission spectra (ARPES) of a hole in the t-J Holstein model giving perfect agreement with numerically exact diagrammatic Monte Carlo (DMC) data at zero temperature for all regimes of electron-phonon coupling. Generalizing the approach to finite temperatures, we find that the anomalous temperature dependence of the ARPES in undoped cuprates is explained by cooperative interplay of coupling of the hole to magnetic fluctuations and strong electron-phonon interaction.