Contrast-enhanced magnetic resonance imaging (MRI) can be used to visualize the transmural extent of myocardial infarction with high spatial resolution. The aim of this review is to provide an overview of the use of contrast-enhanced MRI for characterization of ischemic myocardial injury in comparison to other imaging methods and its relevance in clinical syndromes related to coronary artery disease. Infarcted myocardium appears hyperenhanced compared with normal myocardium when imaged by a delayed-enhancement MRI technique with the use of an inversion-prepared T(1)-weighted sequence after injection of gadolinium chelates, such as gadolinium-diethylenetriamine pentaacetic acid. Experimental and clinical studies indicate that the extent of delayed enhancement is reproducible and closely correlates with the size of myocardial necrosis or infarct scar as determined by established in vitro and in vivo methods. Furthermore, MRI appears to be more sensitive than other imaging methods in detecting small subendocardial infarctions. The transmural extent of delayed enhancement potentially predicts functional outcome after revascularization in acute myocardial infarction and chronic ischemic heart disease, indicating that it can accurately discriminate between infarction and dysfunctional but viable myocardium. Further experience from clinical trials is needed to understand the association of delayed enhancement with clinical outcomes.