Photo-oxidation of amino acids is known to generate reactive protein radicals that lead to lethal disorders. We investigated photoionization of hydrated phenylglycine complexes in the gas phase and found that the excess internal energy from photoionization drives decarboxylation in competition with dehydration. We also found that, in decarboxylation, the solvent migrates a large distance from the C terminus of the neutral amino acid to the N terminus of the newly formed radical cation upon ionization, prior to the departure of the carboxyl group. It is noted that a solvent does not just act as a passive medium bound to the solute molecule but actively pursues its own course of action upon external perturbation that changes its chemical environment.