Mitochondrial function is necessary to supply the energy required for cell metabolism. Mutations/polymorphisms in mitochondrial DNA (mtDNA) have been implicated in Parkinson's disease (PD). The mitochondrial transcription factor A (TFAM) controls the transcription of mtDNA and regulates the mtDNA-copy number, thus being important for maintaining ATP production. TFAM dysfunction may also be involved in PD, and TFAM gene mutations/polymorphisms could contribute to the risk of developing PD. We searched for gene variants in the seven TFAM-exons in a total of 250 PD-patients. We found five common polymorphisms, and only one was a missense change (S12T in exon 1). Genotype and allele frequencies did not differ between patients and healthy controls (n=225) for the five polymorphisms. Our work suggests that TFAM-variants did not contribute to the risk of developing PD.