The presence of CD3/TCR V gamma 3 moieties on both dendritic epidermal T cells (DETC) and fetal murine thymocytes has led to the concept that fetal thymocytes expressing this particular TCR phenotype are the actual DETC precursors. To test this assumption, we injected i.v. thymocyte suspensions prepared from day 16 and day 19 fetal mice as well as from adult animals, into syngeneic and Thy-1-disparate nude mice, the epidermis of which contains only Thy-1+/CD3- lymphocytes. Phenotypic analysis of the recipient epidermis by in situ immunolabeling revealed that injection of day 16 and day 19 fetal, but not of adult, thymocytes resulted in the appearance of distinct clusters of DETC as judged by their dendritic morphology and uniform expression of CD3/TCR V gamma 3 receptors. The presence of CD3+/TCR V gamma 3+ cells in the fetal, but not in the adult, thymocyte population(s) together with the failure to detect DETC after transfer of Thy-1+/CD3- fetal thymocytes strongly suggest that CD3+/TCR V gamma 3+ thymocytes are the DETC precursors. Kinetic studies of the DETC population from 2 to 12 wk after cell transfer revealed a substantial increase in the cell density within the DETC clusters that was not accompanied by an increase in the number of clusters. Thus, it appears that newly arriving DETC undergo proliferative activity in situ. Collectively, our results show that, under the experimental conditions chosen, CD3+/TCR V gamma 3+ fetal thymocytes are actual DETC precursors. Although it is not clear whether these experimental conditions are representative of the in vivo situation, they may serve as a useful model for studying the mechanisms underlying the homing properties of different lymphocyte subsets.