The aims of this study were two-fold: (1) to consider the criterion-related validity of the multi-stage fitness test (MSFT) by comparing the predicted maximal oxygen uptake (.VO(2max)) and distance travelled with peak oxygen uptake (VO(2peak)) measured using a wheelchair ergometer (n = 24); and (2) to assess the reliability of the MSFT in a sub-sample of wheelchair athletes (n = 10) measured on two occasions. Twenty-four trained male wheelchair basketball players (mean age 29 years, s = 6) took part in the study. All participants performed a continuous incremental wheelchair ergometer test to volitional exhaustion to determine .VO(2peak), and the MSFT on an indoor wooden basketball court. Mean ergometer .VO(2peak) was 2.66 litres . min(-1) (s = 0.49) and peak heart rate was 188 beats . min(-1) (s = 10). The group mean MSFT distance travelled was 2056 m (s = 272) and mean peak heart rate was 186 beats . min(-1) (s = 11). Low to moderate correlations (rho = 0.39 to 0.58; 95% confidence interval [CI]: -0.02 to 0.69 and 0.23 to 0.80) were found between distance travelled in the MSFT and different expressions of wheelchair ergometer .VO(2peak). There was a mean bias of -1.9 beats . min(-1) (95% CI: -5.9 to 2.0) and standard error of measurement of 6.6 beats . min(-1) (95% CI: 5.4 to 8.8) between the ergometer and MSFT peak heart rates. A similar comparison of ergometer and predicted MSFT .VO(2peak) values revealed a large mean systematic bias of 15.3 ml . kg(-1) . min(-1) (95% CI: 13.2 to 17.4) and standard error of measurement of 3.5 ml . kg(-1) . min(-1) (95% CI: 2.8 to 4.6). Small standard errors of measurement for MSFT distance travelled (86 m; 95% CI: 59 to 157) and MSFT peak heart rate (2.4 beats . min(-1); 95% CI: 1.7 to 4.5) suggest that these variables can be measured reliably. The results suggest that the multi-stage fitness test provides reliable data with this population, but does not fully reflect the aerobic capacity of wheelchair athletes directly.