Mesenteric lymph is the mechanistic link between splanchnic hypoperfusion and acute lung injury (ALI), but the culprit mediator(s) remains elusive. Previous work has shown that administration of a phospholipase A(2) (PLA(2)) inhibitor attenuated postshock ALI and also identified a non-ionic lipid within the postshock mesenteric lymph (PSML) responsible for polymorphonuclear neutrophil (PMN) priming. Consequently, we hypothesized that gut-derived leukotriene B(4) (LTB(4)) is a key mediator in the pathogenesis of ALI. Trauma/hemorrhagic shock (T/HS) was induced in male Sprague-Dawley rats and the mesenteric duct cannulated for lymph collection/diversion. PSML, arachidonic acid (AA), and a LTB(4) receptor antagonist were added to PMNs in vitro. LC/MS/MS was employed to identify bioactive lipids in PSML and the lungs. T/HS increased AA in PSML and increased LTB(4) and PMNs in the lung. Lymph diversion decreased lung LTB(4) by 75% and PMNs by 40%. PSML stimulated PMN priming (11.56 +/- 1.25 vs. 3.95 +/- 0.29 nmol O(2)(-)/min; 3.75 x 10(5) cells/ml; P < 0.01) that was attenuated by LTB(4) receptor blockade (2.64 +/- 0.58; P < 0.01). AA stimulated PMNs to produce LTB(4), and AA-induced PMN priming was attenuated by LTB(4) receptor antagonism. Collectively, these data indicate that splanchnic ischemia/reperfusion activates gut PLA(2)-mediated release of AA into the lymph where it is delivered to the lungs, provoking LTB(4) production and subsequent PMN-mediated lung injury.