Objective: The objective was to evaluate the use of fluorodeoxyglucose positron emission tomography (FDG-PET) in differentiating benign from malignant compression fractures.
Patients and methods: In a retrospective analysis, we identified 33 patients with 43 compression fractures who underwent FDG-PET. On FDG-PET the uptake pattern was recorded qualitatively and semiquantitatively and fractures were categorized as benign or malignant. Standardized uptake values (SUV) were obtained. MRI, CT, and biopsy results as well as clinical follow-up for 1-3 years served as standards of reference. The Student's t test was used to determine whether there was a statistically significant difference between the SUV for benign and malignant compression fractures.
Results: There were 14 malignant and 29 benign compression fractures, including 5 acute benign fractures. On FDG-PET, 5 benign fractures were falsely classified as malignant (false-positive). Three of these patients underwent prior treatment with bone marrow-stimulating agents. There were two false-negative results. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of FDG-PET in differentiating benign from malignant compression fractures were 86%, 83%, 84%, 71%, and 92% respectively. The difference between SUV values of benign and malignant fractures was statistically significant (1.9 +/- 0.97 for benign and 3.9 +/- 1.52 for malignant fractures, p < 0.001). SUV of benign acute and chronic fractures were not statistically significant.
Conclusion: Fluorodeoxyglucose positron emission tomography is useful in differentiating benign from malignant compression fractures. Therapy with bone marrow-stimulating agents can mimic malignant involvement.