Parkinson's disease (PD) is a common neurodegenerative disorder in the aging population, affecting more than 1% over the age of 65 years. Certain rare forms of the disease are monogenic, representing 5-10% of PD patients, but there is increasing evidence that multiple genetic risk factors are important also for common forms of PD. To date, 13 genetic loci, PARK1-13, have been suggested for rare forms of PD such as autosomal dominant and autosomal recessive PD. At six of these loci, genes have been identified and reported by several groups to carry mutations that are linked to affected family members. Genes in which mutations have been linked to familial PD have also been shown to be candidate genes for idiopathic forms of PD, as those same genes may also carry other mutations that merely increase the risk. Four of the PARK genes, SNCA at PARK1, UCH-L1 at PARK5, PINK1 at PARK6 and LRRK2 at PARK8, have been implicated in sporadic PD. There are indeed multiple genetic risk factors that combine in different ways to increase or decrease risk, and several of these need to be identified in order to begin unwinding the causative pathways leading to the different forms of PD. In this review, we present the molecular genetics of PD that are understood today, to help explain the pathways leading to neurodegeneration.