Transient receptor potential canonical (TRPC) proteins have been proposed to function as plasma membrane Ca2+ channels activated by store depletion and/or by receptor stimulation. However, their role in the increase in cytosolic Ca2+ activated by contractile agonists in vascular smooth muscle is not yet elucidated. The present study was designed to investigate the functional and molecular properties of the Ca2+ entry pathway activated by endothelin-1 in primary cultured aortic smooth muscle cells. Measurement of the Ca2+ signal in fura-2-loaded cells allowed to characterize endothelin-1-evoked Ca2+ entry, which was resistant to dihydropyridine, and was blocked by 2-aminoethoxydiphenylborate (2-APB) and micromolar concentration of Gd3+. It was not activated by store depletion, but was inhibited by the endothelin ETA receptor antagonist BQ-123, and by heparin. On the opposite, thapsigargin-induced store depletion activated a Ca2+ entry pathway that was not affected by 2-APB, BQ-123 or heparin, and was less sensitive to Gd3+ than was endothelin-1-evoked Ca2+ entry. Investigation of the gene expression of TRPC isoforms by real-time RT-PCR revealed that TRPC1 was the most abundant. In cells transfected with TRPC1 small interfering RNA sequence, TRPC1 mRNA and protein expression were decreased by 72+/-3% and 86+/-2%, respectively, while TRPC6 expression was unaffected. In TRPC1 knockdown cells, both endothelin-1-evoked Ca2+ entry and store-operated Ca2+ entry evoked by thapsigargin were blunted. These results indicate that in aortic smooth muscle cells, TRPC1 is not only involved in Ca2+ entry activated by store depletion but also in receptor-operated Ca2+ entry, which requires inositol (1,4,5) triphosphate receptor activation.