1. The diversity of species traits in a biological assemblage varies not only with species richness, but also with species evenness and organism density, which together influence the concentration of traits within functional guilds. Potential trait diversity at local scales is also constrained by the regional species pool. Implications of such variation for spatio-temporal variability in biodiversity-ecosystem functioning relationships are likely to be complex, but are poorly understood. 2. In microcosm experiments conducted at laboratories in Sweden, Ireland and Romania, we investigated effects of species richness, evenness and density of stream-living detritivores on two related processes: detritivore leaf-processing efficiency (LPE) and growth. Assemblage composition varied among laboratories: one taxonomic order (Plecoptera) was studied in Sweden, whereas two orders, encompassing wider trait variation, were studied in Romania (Trichoptera and Plecoptera) and Ireland (Trichoptera and Isopoda). 3. Relationships between density and both LPE and growth ranged from negative to positive across the study species, highlighting the potential for density-dependent variation in process rates to alter ecosystem functioning, but indicating that such effects depend on species identity. 4. LPE varied with species diversity in the two more heterogeneous assemblages, but whereas LPE in the Romanian study was generally enhanced as richness increased, LPE in the Irish study increased only in less-even polycultures dominated by particular species. Transgressive overyielding was detected in the Irish experiment, indicating complementary resource use and/or facilitation (complementarity). These mechanisms could not be distinguished from the selection effect in the Romanian study. 5. Growth was elevated in Romanian species mixtures, reflecting positive complementarity, but lower than expected growth in some Swedish mixtures was associated with negative complementarity, indicating interspecific interference competition. 6. Our results emphasize the potential importance of detritivore diversity for stream ecosystem functioning, but both the effects of diversity on the studied processes, and the mechanisms underlying those effects, were specific to each assemblage and process. Such variability highlights challenges in generalizing impacts of diversity change for functional integrity in streams and other ecosystems in which the occurrence of important species traits fluctuates over relatively small spatio-temporal scales.