Microarray analysis of defined Mycobacterium tuberculosis populations using RNA amplification strategies

BMC Genomics. 2008 Feb 25:9:94. doi: 10.1186/1471-2164-9-94.

Abstract

Background: The amplification of bacterial RNA is required if complex host-pathogen interactions are to be studied where the recovery of bacterial RNA is limited. Here, using a whole genome Mycobacterium tuberculosis microarray to measure cross-genome representation of amplified mRNA populations, we have investigated two approaches to RNA amplification using different priming strategies. The first using oligo-dT primers after polyadenylation of the bacterial RNA, the second using a set of mycobacterial amplification-directed primers both linked to T7 polymerase in vitro run off transcription.

Results: The reproducibility, sensitivity, and the representational bias introduced by these amplification systems were examined by contrasting expression profiles of the amplified products from inputs of 500, 50 and 5 ng total M. tuberculosis RNA with unamplified RNA from the same source. In addition, as a direct measure of the effectiveness of bacterial amplification for identifying biologically relevant changes in gene expression, a model M. tuberculosis system of microaerophilic growth and non-replicating persistence was used to assess the capability of amplified RNA microarray comparisons. Mycobacterial RNA was reproducibly amplified using both methods from as little as 5 ng total RNA (~equivalent to 2 x 105 bacilli). Differential gene expression patterns observed with unamplified RNA in the switch from aerobic to microaerophilic growth were also reflected in the amplified expression profiles using both methods.

Conclusion: Here we describe two reproducible methods of bacterial RNA amplification that will allow previously intractable host-pathogen interactions during bacterial infection to be explored at the whole genome level by RNA profiling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aerobiosis
  • Base Sequence
  • DNA Primers / genetics
  • Gene Expression Profiling / statistics & numerical data
  • Genes, Bacterial
  • Genomics
  • Mycobacterium tuberculosis / genetics*
  • Mycobacterium tuberculosis / growth & development
  • Mycobacterium tuberculosis / metabolism
  • Nucleic Acid Amplification Techniques* / statistics & numerical data
  • Oligonucleotide Array Sequence Analysis / methods*
  • Oligonucleotide Array Sequence Analysis / statistics & numerical data
  • RNA, Bacterial / genetics*
  • RNA, Bacterial / isolation & purification
  • Reproducibility of Results
  • Sensitivity and Specificity

Substances

  • DNA Primers
  • RNA, Bacterial