The adverse effects of glucocorticoid deficiency on the expression of genes encoding Leydig cell surface receptors and the response to LH/prolactin/insulin to produce testosterone production are yet to be recognized. Following metyrapone-induced corticosterone deficiency, serum corticosterone, testosterone and insulin levels decrease, whereas serum prolactin exhibits a significant increase and serum LH remains unaltered. LH binding and LH receptor mRNA expression were not altered, but a significant decrease in PRL and insulin binding and in the mRNA expressions of their receptors were observed in corticosterone-deficient rats in vivo. Corticosterone deficiency significantly decreases the Leydig cellular basal as well as hormone-stimulated testosterone production in vitro. Simultaneous administration of corticosterone prevented its deficiency-induced changes in Leydig cells both in vivo and in vitro. Our results show that metyrapone-induced corticosterone deficiency impairs Leydig cell insulin and prolactin receptors, and their mRNA expression and the response of Leydig cells to LH/PRL/insulin on testosterone production.