Purpose: HTI-286 is a fully synthetic analogue of the natural tripeptide hemiasterlin that inhibits tubulin polymerization and has strong cytotoxic potential. In this study, we evaluate the inhibitory effects of HTI-286 on human bladder cancer growth, both in vitro and as an intravesical agent in an orthotopic murine model.
Experimental design: Various bladder cancer cell lines were treated with HTI-286 and mitomycin C (MMC) in vitro. Human KU-7 bladder tumor cells that stably express firefly luciferase were inoculated in female nude mice by intravesical instillation and quantified using bioluminescence imaging. Mice with established KU-7-luc tumors were given HTI-286 or MMC intravesically twice a week for 2 h. Pharmacokinetic data was obtained using high-performance liquid chromatography-mass spectrometry analyses.
Results: In vitro, HTI-286 was a potent inhibitor of proliferation in all tested cell lines and induced marked increases in apoptosis of KU-7-luc cells even after brief exposure. In vivo, HTI-286 significantly delayed cancer growth of bladder tumors in a dose-dependent fashion. HTI-286, at a concentration of 0.2 mg/mL, had comparable strong cytotoxicity as 2.0 mg/mL of MMC. The estimated systemic bioavailability of intravesically given HTI-286 was 1.5% to 2.1% of the initial dose.
Conclusions: Intravesical HTI-286 instillation therapy showed promising antitumor activity and minimal toxicity in an orthotopic mouse model of high-grade bladder cancer. These findings provide preclinical proof-of-principle for HTI-286 as an intravesical therapy for nonmuscle-invasive bladder cancer and warrant further evaluation of efficacy and safety in early-phase clinical trials.