Oxysterols found in oxidized low-density lipoproteins are probably involved in the appearance of atheroma; some are cytotoxic and some able to induce cytokine secretion. An oxysterol-induced interleukin-8 (IL-8) secretion in human monocytes/macrophages has been previously noticed, but the mechanisms remained unclear. In this paper, we investigated the signaling pathways leading to the induction of IL-8 secretion in monocytic THP-1 cells treated with 7beta-hydroxycholesterol, a cytototoxic oxysterol, or with 25-hydroxycholesterol, an oxysterol non-cytotoxic toward this cell line. The oxysterol-induced IL-8 secretion appears to be a calcium-dependent phenomenon as shown by the use of calcium channel blockers, which strongly decreased IL-8 secretion and IL-8 messenger RNA (mRNA) levels. Fluo-3 staining used in flow cytometry and video microscopy revealed an oxysterol-induced Ca(2+) influx, varying according to the oxysterol studied, leading to the activation of the MEK/ERK1/2 pathway as demonstrated by Western blot analysis. ERK activation led to an increase of c-fos mRNA and/or an activation of c-fos. Luciferase reporter gene assay using constructs of the human IL-8 gene promoter and Transam assay revealed the involvement of the AP-1 transcription factor in oxysterol-dependent IL-8 secretion. These results demonstrate that oxysterol-induced IL-8 secretion is a calcium-dependent phenomenon involving the MEK/ERK1/2 pathway leading to the activation of IL-8 gene via AP-1 (c-fos).