Correlation between 6q25.3 deletion status and survival in pediatric intracranial ependymomas

Cancer Genet Cytogenet. 2008 Apr 1;182(1):18-26. doi: 10.1016/j.cancergencyto.2007.12.008.

Abstract

Losses and rearrangements of genetic material on chromosome 6q are frequently found in several human malignancies, including primary central nervous system tumors. We previously used microsatellite analysis of ependymomas to identify frequent deletions in regions 6q15 approximately q16, 6q21 approximately q22.1, and 6q24.3 approximately q25.3. To refine our preliminary analysis of potential prognostic regions, we used a panel of 25 microsatellite markers located between 6q15 and 6qter in 49 pairs of matched normal and tumor specimens from 28 children and 21 adults with ependymoma. Allelic deletions were detected in 34 of 49 patients (69%), and two common regions of deletions (6q24.3 and 6q25.2 approximately q25.3) were identified. A short segment of approximately 0.4 Mb between D6S1612 and D6S363 on 6q25.3, containing the SNX9 and SYNJ2 genes, exhibited the highest number of aberrations (n = 38). Pediatric tumors showed slightly fewer aberrations (64%) than adult tumors (76%) and also predominantly exhibited small interstitial deletions, in contrast to the extensive losses of genetic material in adults. Pediatric anaplastic intracranial (supra- and infratentorial) ependymomas harboring the 6q25.3 deletion (n = 9) showed significantly longer overall survival than did patients of the same group without the aberration (n = 6), independent of the extent of resection (P = 0.013). This supports the identified deletion on 6q25.3 as a candidate favorable prognostic parameter and warrants further investigation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Brain Neoplasms / genetics*
  • Brain Neoplasms / mortality
  • Child
  • Child, Preschool
  • Chromosome Deletion*
  • Chromosomes, Human, Pair 6*
  • Ependymoma / genetics*
  • Ependymoma / mortality
  • Female
  • Humans
  • Infant
  • Male
  • Microsatellite Repeats
  • Middle Aged
  • Survival Analysis