The production of secondary metabolites in seaweed have been related to a capability to partition compounds into cellular specialized storage structures, like gland cells and the corps en cerise (CC) or cherry bodies. The possible mechanisms that bring these compounds to the thallus surface remain poorly understood. Therefore, the aim of this work is perform a characterization of the CC and determine the intra-cellular dynamics of halogenated compounds in Laurencia obtusa. The dynamics of CC and the mechanisms related to the intra-cellular transport of halogenated compounds were evaluated by using optical tweezers and time-lapse video microscopy. The CC were isolated and its elemental composition was characterized using X-ray microanalysis. The cellular distribution of halogenated compounds was also demonstrated by fluorescence microscopy. Three-dimensional reconstruction technique was used to provide a visualization of the structures that connect CC to cell periphery. As main findings, we confirmed that the halogenated compounds are mainly found in CC and also in vesicles distributed along the cytoplasm and within the chloroplasts. We demonstrated that CC is mechanically fixed to cell periphery by a stalk-like connection. A vesicle transport though membranous tubular connections was seen occurring from CC to cell wall region. We also demonstrated a process of cortical cell death event, resulting in degradation of CC. We suggested that the vesicle transportation along membranous tubular connections and cell death events are related to the mechanisms of halogenated compounds exudation to the thallus surface and consequently with defensive role against herbivores and fouling.