Epidemiologic and experimental evidence suggests that a link exists between inflammation and cancer, although this relationship has only recently begun to be elucidated for lung cancer, the most frequently fatal human tumor. Nuclear factor-kappaB (NF-kappaB), a transcription factor that controls innate immune responses in the lungs, has been implicated as an important determinant of cancer cell proliferative and metastatic potential; however, its role in lung tumorigenesis is uncertain. Here, we specifically examine the role of NF-kappaB-induced airway inflammation in lung cancer metastasis using a model of intravenous injection of Lewis lung carcinoma cells into immunocompetent C57Bl/6 mice. Induction of lung inflammation by direct and specific NF-kappaB activation in airway epithelial cells potentiates lung adenocarcinoma metastasis. Moreover, we identify resident lung macrophages as crucial effectors of lung susceptibility to metastatic cancer growth. We conclude that NF-kappaB activity in host tissue is a significant factor in the development of lung metastasis.