The molecular bases of Alzheimer disease and related neurodegenerative disorders are becoming better understood, but the means for definitive diagnosis and monitoring in vivo remain lacking. Near-infrared optical spectroscopy offers a potential solution. We acquired transmission and reflectance spectra of thin brain tissue slabs, from which we calculated wavelength-dependent absorption and reduced scattering coefficients from 470-1000 nm. The reduced scattering coefficients in the near infrared clearly differentiated Alzheimer from control specimens. Diffuse reflectance spectra of gross brain tissue in vitro confirmed this observation. These results suggest a means for diagnosing and monitoring Alzheimer disease in vivo, using near-infrared optical spectroscopy.