Low-magnetic-field control of electric polarization vector in a helimagnet

Science. 2008 Mar 21;319(5870):1643-6. doi: 10.1126/science.1154507.

Abstract

The mutual control of the electric and magnetic properties of a solid is currently of great interest because of the possible application for novel electronic devices. We report on the low-magnetic-field (for example, B values of +/-30 milliteslas) control of the polarization (P) vector in a hexaferrite, Ba2Mg2Fe12O22, which shows the helimagnetic spin structure with the propagation vector k0 parallel to [001]. The B-induced transverse conical spin structure carries the P vector directing perpendicular to both B and k0, in accord with the recently proposed spin-current model. Then, the oscillating or multidirectionally rotating B produces the cyclic displacement current via the flexible handling of the magnetic cone axis.