High resolution and low-temperature photoelectron spectroscopy of an oxygen-linked fullerene dimer dianion: C(120)O(2-)

J Chem Phys. 2008 Mar 21;128(11):114307. doi: 10.1063/1.2889384.

Abstract

C(120)O comprises two C(60) cages linked by a furan ring and is formed by reactions of C(60)O and C(60). We have produced doubly charged anions of this fullerene dimer (C(120)O(2-)) and studied its electronic structure and stability using photoelectron spectroscopy and theoretical calculations. High resolution and vibrationally resolved photoelectron spectra were obtained at 70 K and at several photon energies. The second electron affinity of C(120)O was measured to be 1.02+/-0.03 eV and the intramolecular Coulomb repulsion was estimated to be about 0.8 eV in C(120)O(2-) on the basis of the observed repulsive Coulomb barrier. A low-lying excited state ((2)B(1)) was also observed for C(120)O(-) at 0.09 eV above the ground state ((2)A(1)). The C(120)O(2-) dianion can be viewed as a single electron on each C(60) ball very weakly coupled. Theoretical calculations showed that the singlet and triplet states of C(120)O(2-) are nearly degenerate and can both be present in the experiment. The computed electron binding energies and excitation energies, as well as Franck-Condon factors, are used to help interpret the photoelectron spectra. A C-C bond-cleaved isomer, C(60)-O-C(60) (2-), was also observed with a higher electron binding energy of 1.54 eV.