Exotic species can threaten native ecosystems and reduce services that ecosystems provide to humans. Early detection of incipient populations of exotic species is a key step in containing exotics before explosive population growth and corresponding impacts occur. We report the results of the first three years of an exotic plant early detection and treatment program conducted along more than 3,000 km of transportation corridors within an area >1.5 million ha in the Mojave Desert, USA. Incipient populations of 43 exotic plant species were mapped using global positioning and geographic information systems. Brassica tournefortii (Sahara mustard) infested the most soil types (47% of 256) surveyed in the study area, while Nicotiana glauca (tree tobacco) and others currently occupy less than 5% of soil types. Malcolmia africana (African mustard) was disproportionately detected on gypsum soils, occurring on 59% of gypsum soil types compared to 27% of all surveyed soils. Gypsum soils constitute unique rare plant habitat in this region, and by conventional wisdom were not previously considered prone to invasion. While this program has provided an initial assessment of the landscape-scale distribution of exotic species along transportation corridors, evaluations of both the survey methods and the effectiveness of treating incipient populations are needed. An exotic plant information system most useful to resource mangers will likely include integrating planning oriented coarse-scale surveys, more detailed monitoring of targeted locations, and research on species life histories, community invasibility, and treatment effectiveness.