Maternal obesity and over-nutrition give rise to both obstetric problems and neonatal morbidity. The objective of this study was to evaluate effects of maternal obesity and over-nutrition on signalling of the AMP-activated protein kinase (AMPK) pathway in fetal skeletal muscle in an obese pregnant sheep model. Non-pregnant ewes were assigned to a control group (Con, fed 100% of NRC nutrient recommendations, n = 7) or obesogenic group (OB, fed 150% of National Research Council (NRC) recommendations, n = 7) diet from 60 days before to 75 days after conception (term 150 days) when fetal semitendinosus skeletal muscle (St) was sampled. OB mothers developed severe obesity accompanied by higher maternal and fetal plasma glucose and insulin levels. In fetal St, activity of phosphoinositide-3 kinase (PI3K) associated with insulin receptor substrate-1 (IRS-1) was attenuated (P < 0.05), in agreement with the increased phophorylation of IRS-1 at serine 1011. Phosphorylation of AMP-activated protein kinase (AMPK) at Thr 172, acetyl-CoA carboxylase at Ser 79, tuberous sclerosis 2 at Thr 1462 and eukaryotic translation initiation factor 4E-binding protein 1 at Thr 37/46 were reduced in OB compared to Con fetal St. No difference in energy status (AMP/ATP ratio) was observed. The expression of protein phosphatase 2C was increased in OB compared to Con fetal St. Plasma tumour necrosis factor alpha (TNFalpha) was increased in OB fetuses indicating an increased inflammatory state. Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) was higher in OB St, indicating enhanced adipogenesis. The glutathione: glutathione disulphide ratio was also lower, showing increased oxidative stress in OB fetal St. In summary, we have demonstrated decreased signalling of the AMPK system in skeletal muscle of fetuses of OB mothers, which may play a role in altered muscle development and development of insulin resistance in the offspring.