Objective: Use comparison with indirect calorimetry to confirm the ability of our previously described equation to predict resting energy expenditure in mechanically ventilated patients.
Design: Prospective, validation study.
Setting: Eighteen-bed, medical intensive care unit at a teaching hospital.
Patients: All adult patients intubated >24 hrs were assessed for eligibility. Exclusion criteria were clinical situations that could contribute to erroneous calorimetric measurements.
Interventions: Resting energy expenditure was calculated using the original Harris-Benedict equations and those corrected for usual stress factors, the Swinamer equation, the Fusco equation, the Ireton-Jones equation, and our equation: resting energy expenditure (kcal/day) = 8 x weight (kg) + 14 x height (cm) + 32 x minute ventilation (L/min) + 94 x temperature (degrees C) - 4834.
Measurements and main results: Resting energy expenditure was measured by indirect calorimetry for the 45 included patients. Resting energy expenditure calculated with our predictive model correlated with the measured resting energy expenditure (r2 = .62, p < .0001), and Bland-Altman analysis showed a mean bias of -192 +/- 277 kcal/day, with limits of agreement ranging from -735 to 351 kcal/day. Resting energy expenditure calculated with the Harris-Benedict equations was more weakly correlated with measured resting energy expenditure (r2 = .41, p < .0001), with Bland-Altman analysis showing a mean bias of 279 +/- 346 kcal/day between them and the limits of agreement ranging from -399 to 957 kcal/day. Applying usual stress-correction factors to the Harris-Benedict equations generated wide variability, and the correlation with measured resting energy expenditure was poorer (r2 = .18, p < .0001), with Bland-Altman analysis showing a mean bias of -357 +/- 750 kcal/day and limits of agreement ranging from -1827 to 1113 kcal/day. The use of the Swinamer, Fusco, or Ireton-Jones predictive methods yielded weaker correlation between calculated and measured resting energy expenditure (r2 = .41, p < .0001; r2 = .38, p < .0001; r2 = .39, p < .0001, respectively) than our equation, and Bland-Altman analysis showed no improvement in agreement and variability between methods.
Conclusions: The Faisy equation, based on static (height), less stable (weight), and dynamic biometric variables (temperature and minute ventilation), provided precise and unbiased resting energy expenditure estimations in mechanically ventilated patients.