The most potent immunotoxins (ITs) developed to date contain bacterial or plant cytotoxic components. As these are potentially immunogenic in man, human proteins are preferred for the long-term treatment of cancer. We have developed the first humanized IT for the treatment of CD64 malignancies such as acute myeloid leukemia. The bacterially expressed IT is composed of a humanized anti-CD64 single chain fragment [h22(scFv)] genetically fused to the human RNase angiogenin. As angiogenin lacks a dedicated translocation domain responsible for the higher potency of bacterial and plant-derived toxins, we have incorporated a recombinant adapter that contains a synthetic translocation domain flanked by proteolytically cleavable endosomal and cytosolic consensus sites. Although insertion of the adapter increased the cytotoxicity by up to 20-fold, serum stability was markedly reduced. Therefore, we designed a modified adapter variant with the endosomal-cleavable peptide deleted. The IT containing the truncated adapter showed significantly higher cytotoxicity than the adapter-free IT and superior serum stability to facilitate the potential applications in patients.