The 3ppi u c1Pi u-X 1Sigmag+(2,0) Rydberg and b' 1Sigmau+-X 1Sigmag+(7,0) valence transitions of 14N2, 14N15N, and 15N2 are studied using laser-based 1 extreme ultraviolet (XUV)+1' UV two-photon-ionization spectroscopy, supplemented by synchrotron-based hotoabsorption measurements in the case of 14N2. For each isotopomer, effective rotational interactions between the c(v=2) and b'(v=7) levels are found to cause strong Lambda-doubling in c(v=2) and dramatic P/R-branch intensity anomalies in the b'-X(7,0) band due to the effects of quantum interference. Local perturbations in energy and predissociation line width for the c(v=2) Rydberg level are observed and attributed to a spin-orbit interaction with the crossing, short-lived C 3Pi u(v=17) valence level.