This work investigated the potential of solid lipid nanoparticles (SLNs) to improve oral bioavailablity and tissue uptake of a poorly soluble drug, alpha-Asarone. Ultrasonic homogenization method was employed to prepare alpha-Asarone-loaded SLNs (alpha-Asarone-SLNs). Particle size and distribution, pH, viscosity, drug incorporation and zeta potential of the SLNs were investigated. Pharmacokinetic study of oral administration to male rats at 10 mg/Kg suggested that the relative bioavailability of alpha-Asarone was significantly improved in alpha-Asarone-SLN group compared to alpha-Asarone solution group. Comparison of alpha-Asarone-SLN to alpha-Asarone control solution for alpha-Asarone concentrations in rat tissue showed an increased uptake of alpha-Asarone in brain and lung for the ARE-SLN group. These results indicate that alpha-Asarone-SLNs significantly enhance the absorption and tissue distribution of alpha-Asarone. SLNs offer a new approach to improve the oral bioavailability of poorly soluble drugs.