Background: Prostate cancer is one of the commonest cancers worldwide and is responsible for nearly 6% of all male cancer deaths. Despite this relevance, the mechanisms involved in the development and progression of this malignancy remain unknown. The involvement of polypeptides of the mitochondrial respiratory chain, the Krebs cycle and the glutathione antioxidant system in this type of cancer has been previously described, although no publication has focused on the expression of mitochondrial genes in the prostate of PCa patients.
Methods: We have determined by reverse transcription-quantitative PCR (RT-qPCR) the relative amount of the transcripts of eight mitochondrial genes (MT-ND2, MT-ND4, MT-ND6, MT-CYB, 12S/MT-RNR1, 16S/MT-RNR2, MT-CO2/COX2, MT-ATP6), and four nuclear genes (COX11, GSR, CS, ACO2), all of them key players in the normal metabolism of mitochondria. Additionally we analyzed the expression of Cyclophilin A (PPIA).
Results: We observed differential expression of mitochondrial 12S/MT-RNR1, MT-CO2/COX2, and MT-ATP6 transcripts in tumor samples when compared to their paired normal samples.
Conclusions: The amount of mitochondrial 12S/MT-RNR1, MT-CO2/COX2, and MT-ATP6 transcripts is significantly decreased in tumor samples when compared to their paired normal sample, suggesting that mitochondrial gene expression is altered in PCa.
(c) 2008 Wiley-Liss, Inc.