Purpose: (18)F-FDG positron emission tomography (PET) value for the assessment of neuro-endocrine tumours (NET) is limited. Preliminary studies indicate that (18)F-DOPA and (68)Ga-DOTA-NOC are more accurate for disease assessment and (68)Ga-DOTA peptides provide additional data on receptor status that are crucial for targeted radionuclide therapy. At present, there are no comparative studies investigating their role in NET.
Aim: The aim of this study was to compare (68)Ga-DOTA-NOC and (18)F-DOPA for the evaluation of gastro-entero-pancreatic and lung neuro-endocrine tumours.
Materials and methods: Thirteen patients with biopsy-proven NET (gastro-entero-pancreatic or pulmonary) were prospectively enrolled and scheduled for (18)F-DOPA and (68)Ga-DOTA-NOC PET. PET results obtained with both tracers were compared with each other, with other conventional diagnostic procedures (CT, ultrasound) and with follow-up (clinical, imaging).
Results: The most common primary tumour site was the pancreas (8/13) followed by the ileum (2/13), the lung (2/13) and the duodenum (1/13). The carcinoma was well differentiated in 10/13 and poorly differentiated in 3/13 cases. (68)Ga-DOTA-NOC PET was positive, showing at least one lesion, in 13/13 cases while (18)F-DOPA PET was positive in 9/13. On a lesions basis, (68)Ga-DOTA-NOC identified more lesions than (18)F-DOPA (71 vs 45), especially at liver, lung and lymph node level. (68)Ga-DOTA-NOC correctly identified the primary site in six of eight non-operated cases (in five cases, the primary was surgically removed before PET), while (18)F-DOPA identified the primary only in two of eight cases.
Conclusions: Although the patients studied are few and heterogeneous, our data show that (68)Ga-DOTA-NOC is accurate for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours in either the primary or metastatic site and that it offers several advantages over (18)F-DOPA.