Upregulation of aldose reductase during foam cell formation as possible link among diabetes, hyperlipidemia, and atherosclerosis

Arterioscler Thromb Vasc Biol. 2008 Jun;28(6):1137-43. doi: 10.1161/ATVBAHA.107.158295. Epub 2008 May 1.

Abstract

Objective: Aldose reductase (AR) is the rate-limiting enzyme of the polyol pathway. In diabetes, it is related to microvascular complications. We discovered AR expression in foam cells by gene chip screening and hypothesized that it may be relevant in atherosclerosis.

Methods and results: AR gene expression and activity were found to be increased in human blood monocyte-derived macrophages during foam cell formation induced by oxidized LDL (oxLDL, 100 microg/mL). AR activity as photometrically determined by NADPH consumption was effectively inhibited by the AR inhibitor epalrestat. oxLDL-dependent AR upregulation was further increased under hyperglycemic conditions (30 mmol/L D-glucose) as compared to osmotic control, suggesting a synergistic effect of hyperlipidemia and hyperglycemia. AR was also upregulated by 4-hydroxynonenal, a constituent of oxLDL. Upregulation was blocked by an antibody to CD36. AR inhibition resulted in reduction of oxLDL-induced intracellular oxidative stress as determined by 2'7'-dichlorofluoresceine diacetate (H2DCFDA) fluorescence, indicating that proinflammatory effects of oxLDL are partly mediated by AR. Immunohistochemistry showed AR expression in CD68+ human atherosclerotic plaque macrophages.

Conclusions: These data show that oxLDL-induced upregulation of AR in human macrophages is proinflammatory in foam cells and may represent a potential link among hyperlipidemia, atherosclerosis, and diabetes mellitus.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aldehyde Reductase / antagonists & inhibitors
  • Aldehyde Reductase / genetics
  • Aldehyde Reductase / metabolism*
  • Aldehydes / pharmacology
  • Atherosclerosis / enzymology*
  • Atherosclerosis / etiology
  • Diabetes Mellitus, Type 2 / complications
  • Diabetes Mellitus, Type 2 / enzymology*
  • Enzyme Inhibitors / pharmacology
  • Female
  • Foam Cells / drug effects
  • Foam Cells / enzymology*
  • Humans
  • Hyperlipidemias / complications
  • Hyperlipidemias / enzymology*
  • Lipoproteins, LDL / pharmacology
  • Male
  • Oligonucleotide Array Sequence Analysis
  • Oxidative Stress / physiology
  • Rhodanine / analogs & derivatives
  • Rhodanine / pharmacology
  • Risk Factors
  • Thiazolidines / pharmacology
  • Up-Regulation* / drug effects

Substances

  • Aldehydes
  • Enzyme Inhibitors
  • Lipoproteins, LDL
  • Thiazolidines
  • oxidized low density lipoprotein
  • epalrestat
  • Rhodanine
  • Aldehyde Reductase
  • 4-hydroxy-2-nonenal