An innovative solid-phase microextraction coating based on the use of diethoxydiphenylsilane synthesized by sol-gel technology was used for the determination of polycyclic aromatic hydrocarbons at trace levels in milk. The effects of time and temperature of extraction and acetone addition were investigated by experimental design. Regression models and desirability functions were applied to find the experimental conditions providing the highest global extraction response. The capabilities of the developed fiber were proved obtaining limit of quantitation values in the low microg/l range, enabling the direct analysis of complex matrices like milk and a complete desorption of high-boiling compounds without carryover effects.