Rethinking convective quasi-equilibrium: observational constraints for stochastic convective schemes in climate models

Philos Trans A Math Phys Eng Sci. 2008 Jul 28;366(1875):2581-604. doi: 10.1098/rsta.2008.0056.

Abstract

Convective quasi-equilibrium (QE) has for several decades stood as a key postulate for parametrization of the impacts of moist convection at small scales upon the large-scale flow. Departures from QE have motivated stochastic convective parametrization, which in its early stages may be viewed as a sensitivity study. Introducing plausible stochastic terms to modify the existing convective parametrizations can have substantial impact, but, as for so many aspects of convective parametrization, the results are sensitive to details of the assumed processes. We present observational results aimed at helping to constrain convection schemes, with implications for each of conventional, stochastic or 'superparametrization' schemes. The original vision of QE due to Arakawa fares well as a leading approximation, but with a number of updates. Some, like the imperfect connection between the boundary layer and the free troposphere, and the importance of free-tropospheric moisture to buoyancy, are quantitatively important but lie within the framework of ensemble-average convection slaved to the large scale. Observations of critical phenomena associated with a continuous phase transition for precipitation as a function of water vapour and temperature suggest a more substantial revision. While the system's attraction to the critical point is predicted by QE, several fundamental properties of the transition, including high precipitation variance in the critical region, need to be added to the theory. Long-range correlations imply that this variance does not reduce quickly under spatial averaging; scaling associated with this spatial averaging has potential implications for superparametrization. Long tails of the distribution of water vapour create relatively frequent excursions above criticality with associated strong precipitation events.