FNLP injures endotoxin-primed rat lung by neutrophil-dependent and -independent mechanisms

Am J Physiol. 1991 Feb;260(2 Pt 2):R413-20. doi: 10.1152/ajpregu.1991.260.2.R413.

Abstract

Bacterial lipopolysaccharide (LPS) and an N-formyl peptide, N-formyl-neoleucyl-leucyl-phenylalanine (FNLP), synergistically promote lung injury in rats as measured by 125I-labeled albumin flux. Concomitantly, neutrophils are sequestered in the lung. We hypothesized that LPS-FNLP-induced lung injury is mediated both by neutrophil-dependent and -independent mechanisms. Rats were depleted of circulating and marginating neutrophils with vinblastine. LPS-FNLP-induced lung protein leak was partially decreased in these neutrophil-depleted animals, although a component of lung injury remained. We hypothesized that LPS-FNLP-induced lung injury was also mediated by xanthine oxidase (XO). Rats were fed a tungsten-enriched diet that inactivates molybdenum-dependent oxidase systems. LPS-FNLP-induced lung leak was partially decreased in these animals as well. When tungsten-fed rats were also neutrophil depleted with vinblastine, no increase in 125I-albumin flux was observed in response to LPS-FNLP. In parallel experiments, lungs from vinblastine-pretreated rats were isolated and perfused. FNLP infusion into the LPS-primed, crystalloid-perfused lungs caused increased 125I-albumin flux, which was prevented by oxidase inhibition. We conclude that LPS-FNLP-induced lung injury is both neutrophil mediated and neutrophil independent. The nonneutrophil component of the LPS-FNLP-induced lung injury appears to be pulmonary XO derived and dependent.

MeSH terms

  • Animals
  • Diet
  • Endotoxins / pharmacology*
  • Lipopolysaccharides / pharmacology
  • Lung / drug effects*
  • Lung / metabolism
  • Male
  • Neutrophils / physiology*
  • Oligopeptides / pharmacology*
  • Perfusion
  • Permeability
  • Peroxidase / metabolism
  • Proteins / metabolism
  • Rats
  • Rats, Inbred Strains
  • Salmonella typhimurium*
  • Tungsten / administration & dosage
  • Vinblastine / pharmacology

Substances

  • Endotoxins
  • Lipopolysaccharides
  • Oligopeptides
  • Proteins
  • Vinblastine
  • N-formylnorleucyl-leucyl-4-phenylalanine
  • Peroxidase
  • Tungsten