The effects of the potent delta opioid agonist (D-Pen2, D-Pen5)enkephalin (DPDPE) were studied on the endogenous levels and regional distribution of Zn2+ in rat central nervous system by means of flame atomic absorption spectrophotometry. The olfactory bulb exhibited the highest Zn2+ level, followed by the frontal and parietal cortices, striatum and hippocampus; the lowest ion levels were found in the medulla and thoracic spinal cord. Intracerebroventricular administration of DPDPE resulted in significant, time- and dose-dependent decreases in endogenous Zn2+ contents in the parietal cortex, hippocampus and striatum. The action of DPDPE was antagonized by a 30 min naloxone pretreatment. Naloxone alone was without effect in eliciting these responses. Thus, delta opioid receptors may regulate or modulate endogenous Zn2+ levels in the rat brain.