Deimination (or citrullination) is a recently described post-translational modification, but its consequences are not yet well understood. It is catalysed by peptidylarginine deiminases (PADs). These enzymes transform arginyl residues involved in a peptidyl link into citrullyl residues in a calcium-dependent manner. Several PAD substrates have already been identified like filaggrin and keratins K1 and K10 in the epidermis, trichohyalin in hair follicles, but also ubiquitous proteins like histones. PADs act in a large panel of physiological functions as cellular differentiation or gene regulation. It has been suggested that deimination plays a role in many major diseases such as rheumatoid arthritis, multiple sclerosis, Alzheimer's disease and psoriasis. Five human genes (PADIs), encoding five highly conserved paralogous enzymes (PAD1-4 and 6), have been characterized. These genes are clustered in a single locus, at 1p35-36 in man. Only PAD1-3 are expressed in human epidermis. PADs seem to be controlled at transcriptional, translational and activity levels and they present particular substrate specificities. In this review, we shall discuss these main biochemical, genetic and functional aspects of PADs together with their pathophysiological implications.