IL-12p40 is a natural antagonist which inhibits IL-12- and IL-23-mediated biological activity by blocking the binding of IL-12/23 to their receptors. Recently, IL-12p40 was also shown to have immune-enhancing activity through the activation of macrophages or dendritic cells. In this study, we investigated the effects of IL-12p40 as a genetic adjuvant on immune modulation using recombinant adenoviruses expressing IL-12p40 (rAd/IL-12p40) and OVA (rAd/OVA). Coimmunization of rAd/IL-12p40 at a low dose (1 x 10(4) PFU) with rAd/OVA resulted in OVA-specific immune enhancement, while a high dose of rAd/IL-12p40 (1 x 10(8) PFU) caused significant suppression of CD8(+) T cell responses. In addition, the enhancement and suppression of OVA-specific CD8(+) T cell responses correlated with antitumor activity against E.G7-OVA tumor challenge, which subsequently affected the survival rate. Moreover, the differential CD8(+) T cell response by IL-12p40 was still observed in IL-12Rbeta2 knockout (IL-12Rbeta2KO), but not in IL-12Rbeta1 knockout (IL-12Rbeta1KO) mice, indicating that IL-12p40 is a cytokine which can modulate Ag-specific T cell responses depending on IL-12Rbeta1. Our findings provide a novel insight on the physiological role of IL-12p40, which can be informative in the design of vaccine strategies and therapeutic regimens.