The use of antibody molecules in immunoassay, molecular targeting, or detection techniques encompasses a broad variety of applications affecting nearly every field of medical science. In cancer therapy, monoclonal antibodies (mAb) have been used as vehicles to deliver radionuclides, toxins, or drugs to the target cancer cells. New conjugation methods are most needed to conjugate a wide variety of targeting small molecules and peptidomimatic compounds. Here, we exploited a keto-oxime method for conjugation of protease susceptible linkers to an antibody. This modified method involves two steps: (i) introduction of methyl ketone linkers (referred to as linker moiety) to the primary amines present in the antibody and (ii) conjugation of ketone linkers to aminoxy functional group present in the conjugated moiety (referred to as functional moiety). We have optimized this conjugation method and shown that approximately 10 functional moieties can be conjugated to antibody. Conjugation was verified by MALDI-TOF MS and Western blot analysis. The acidic pH conditions used in this method did not change the immune reactivity of the Ab. In addition, in vitro protease susceptibility assay was performed to validate this method for prodrug release assay as well as to remove excess radioimmune conjugates from circulation. This orthogonal method is compatible with peptides containing a thiol, amino, or carboxyl groups in the conjugation moiety.