SLC6A8 deficiency is caused by mutations in the X-linked creatine transporter gene (SLC6A8), which leads to cerebral creatine deficiency, mental retardation, speech and language delay, autistic-like behaviour and epilepsy. Insight in the mechanism of how the transporter is regulated is largely unknown and it is of importance for the development of successful treatment strategies of cerebral creatine deficient syndromes. Our goal was to characterize CRT2 (SLC6A8B), a published splice variant of the creatine transporter. Surprisingly, using RT-PCR we found a novel splice variant, SLC6A8C, which is predominantly found in human tissues with a high energy requirement such as brain, kidney, heart, small intestines and skeletal muscle, where SLC6A8 transporter is most required. The 5' untranslated region (UTR) of the SLC6A8C mRNA was identified using the Smart Race cDNA amplification kit. The SLC6A8C mRNA contains intron 4 and exons 5 through 13 of SLC6A8, including part of the 3' UTR. An open reading frame was found, which predicts a truncated protein identical to the SLC6A8 transporter, comprising the five last C-terminal transmembrane domains of the SLC6A8 transporter. SLC6A8C open reading frame was cloned as a fusion protein with EGFP and the SLC6A8C protein expression was detected by Western Blot. RT-PCR and sequence analysis showed that this splice variant is conserved in evolution, since we also detected it in mouse. This study reveals the presence of a novel SLC6A8 splice variant, SLC6A8C in human and mouse.